TECHNICAL DATA DATASHEET 6179, Preliminary

1200 VOLT, 30 AMP MOSFET FULL-BRIDGE MODULE

Features:

 Q_{GD}

 Q_{G}

Gate to Drain Charge

 $V_{DS} = 800 \text{ V}, I_D = 18\text{A}, V_{GS} = -4/+15\text{V}$

Total Gate Charge

- Electrically isolated, base-less construction •
- Light weight low profile standard package ٠
- Aluminum Nitride substrate
- High temperature engineering plastic shell construction •

18

55

nC

LECTRICAL CHARACTERISTICS PER MOSFET LEG			(T_=25°C UNLESS OTHERWISE SPECIFIED				
SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT	
MOSFET S	SPECIFICATIONS						
BV _{DSS}	Drain to Source Breakdown Voltage $I_D = 100 \ \mu A, V_{GS} = 0V$		1200	-	-	V	
I _D		c = 25°C c = 100°C	-	-	30 20	А	
D(pulse)	Pulsed Drain Current, pulse width tp limited by time	ax	-	-	80	А	
V _{GS}		atic /namic	-	-	-4/+15 -8/+19	V	
Igss	Gate-Source Leakage Current $V_{GS} = +15V / -4V, V_{DS} = 0V$		-	10	250	nA	
$V_{GS(\text{th})}$	5 /	J = 25°C J = 150°C	1.8	2.6 2.2	4.0	V	
IDSS	Zero Gate Voltage Drain Current $V_{DS} = 1200 V, V_{GS}=0V$		-	1	50	μA	
RDS(on)		J = 25°C J = 150°C	-	75 130	99 -	mΩ	
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance $V_{DS} = 200 V$, $V_{GS} = 0 V$, $f = 1 MHz$, $V_{AC} = 25 mV$,	- -	1480 95 3.2	- -	pF	
t _{D(on)} tR t _{D(off)} t _F	Turn On Delay Time Rise Time Turn Off Delay Time Fall Time $V_{DS} = 800 \text{ V}, \text{ I}_D = 20\text{A}, \text{ V}_{GS} = -4/+15\text{ V}, \text{ R}_G = 2.5\Omega$ Timing relative to V_{DS} , inductive load		-	8 22 29 11	- - -	ns	
Eon Eoff	Turn on Energy Loss Turn off Energy Loss V_{DS} = 600 V, I _D = 20A, V _{GS} = -4/+15V, R _G = 2.5 Ω ,	L = 135µH	-	180 48	-	μJ	
R _G (int)	Internal Gate Resistance $f = 1MHz$, $V_{AC} = 25mV$		-	9	-	Ω	
Q _{GS}	Gate to Source Charge			17			

©2023 Sensitron Semiconductor • PH(631) 586 7600 FX (631) 242 9798 • www.sensitron.com • sales@sensitron.com • Page 1

TECHNICAL DATA DATASHEET 6179, Preliminary

EVERSE DIODE CHARACTERISTICS			(T _J =25 °C UNLESS OTHERWISE SPECIFIED)					
SYMBOL	PARAMETER		MIN	ТҮР	MAX	UNIT		
DIODE SP	ECIFICATIONS							
V_{SD}	Diode Forward Voltage $V_{GS} = -4V$, $I_{SD} = 9A$	T」= 25°C T」= 150°C	-	4.5 4.0	-	V		
ls	Continuous Forward Current, V _{GS} = -4V	TJ = 25°C	-	-	27	Α		
t _{rr}	Reverse Recovery Time $V_{GS} = -4V$, $I_{SD} = 20A$, $V_R = 800V$, di/dt = 1925	5A/ µs	-	20	-	ns		
Qrr	Reverse Recovery Charge V _{GS} = -4V, I _{SD} = 20A, V _R =800V, di/dt = 1925	5A/ μs	-	376	-	nC		
I _{rrm}	Peak Reverse Recovery Current V _{GS} = -4V, I _{SD} = 20A, V _R =800V, di/dt = 1925A/ μ s		-	25	-	А		
VS SiC DIO	DDE CHARACTERISTICS		-(T _J	=25°C UNLES	S OTHERWISE	SPECIFIED		
SYMBOL	PARAMETER		MIN	ТҮР	MAX	UNIT		
DIODE SP	ECIFICATIONS							
Vrrm	Repetitive Peak Reverse Voltage		1200	-	-	V		
Vrsm	Surge Peak Reverse Voltage		1300	-	-	V		
VR	DC Peak Blocking Voltage		1200	-	-	V		
I _F	Continuous Forward Current,	T _J = 150°C	-	-	2	A		
IFRM	Repetitive Peak Forward Surge Current t _P = 10ms, Half Sine Pulse	Tc = 25°C Tc = 110°C	-	-	13 8.4	A		
I _{FSM}	Non-Repetitive Forward Surge Current tP = 10ms, Half Sine Pulse	Tc = 25°C Tc = 110°C	-	-	19 16.5	А		
VF	Forward Voltage I _F = 2A	T」= 25°C T」= 150°C	-	1.4 1.9	1.8 3.0	V		
I _R	Reverse Current V _R = 1200V	T」= 25°C T」= 150°C	-	10 40	50 150	μA		
Qc	Total Capacitive Charge V _{R =} 800V, I _F = 2A, di/dt = 200A/µs, TJ = 25 °	C	-	11	-	nC		
С	Total Capacitance $V_R = 0V, T_J = 25 \text{ °C}, f = 1MHz$ $V_R = 400V, T_J = 25 \text{ °C}, f = 1MHz$ $V_R = 800V, T_J = 25 \text{ °C}, f = 1MHz$		-	167 11 8	-	pF		

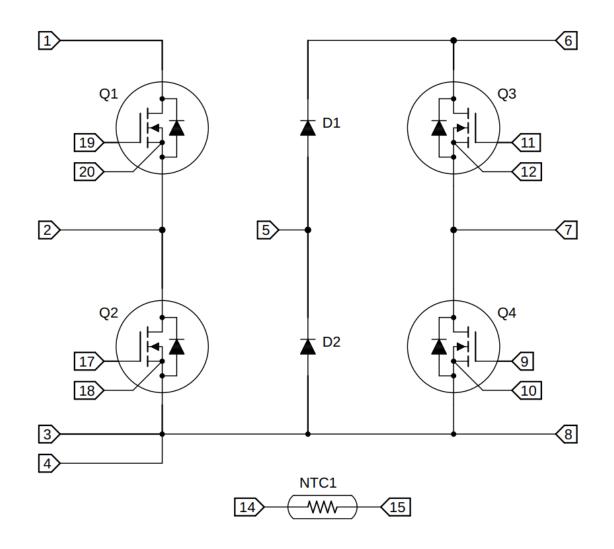
Note: Production units are only tested at room temperature. Low/High temperature operation is guaranteed by design.

NTC-THERMISTOR CHARACTERISTICS

NTC-THERMISTOR CHARACTERISTICS		(TJ=25°C UNLESS OTHERWISE SPECIFIED)					
SYMBOL	PARAMETER		ТҮР	MAX	UNIT		
NTC SPECIFICATIONS							
R ₂₅	Resistance $T_c = 25^{\circ}C$	-	4.7	-	K Ohm		
R _{TOL}	Resistance Tolerance	-	-	1	%		
Р	Maximum Power Dissipation	-	-	50	mW		
B _{25/85}	NTC Thermistor Beta Value $R = R_{25} e^{B_{25/85}(\frac{1}{T} - \frac{1}{298.15})}$		3435		к		

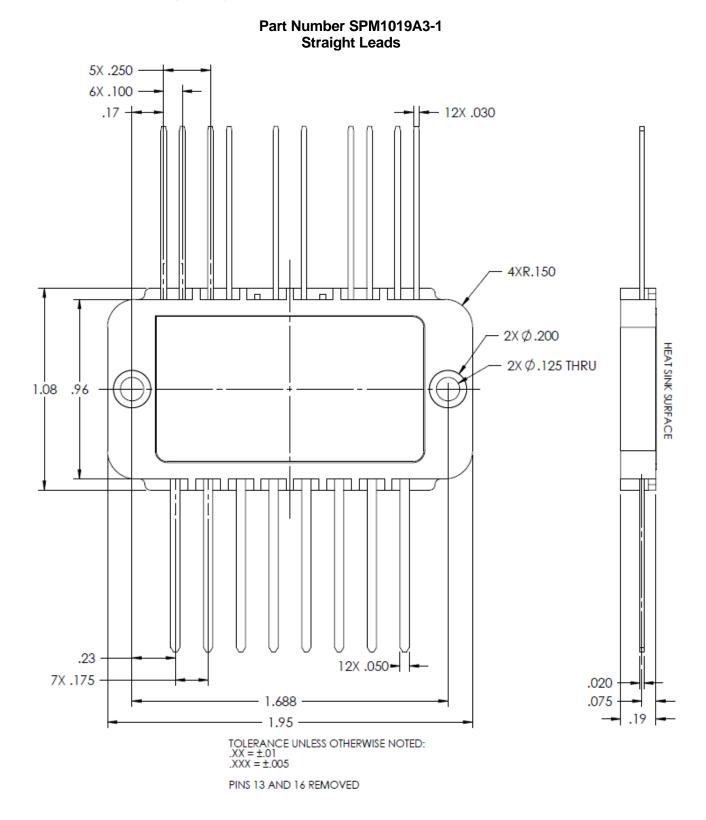
THERMAL AND MECHANICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
R _{0JB_M}	MOSFET Junction-to-Base Plate Thermal Resistance Per Leg	-	0.87	1.00	°C/W
R _{0JB_D}	Diode Junction-to-Base Plate Thermal Resistance Per Leg	-	2.90	3.20	°C/W
V _{iso1}	Isolation to Base Plate	-	-	2500	VDC
V _{iso2}	NTC1(Pin14&15) to all other pins	-	-	2000	Vrms
TJ	Operating Junction Temperature	-55	-	150	٥C
Tstg	Storage Temperature	-55	-	150	٥C
	Mounting Torque for Module Mounting	3	-	4	in-lbs.
	Weight	-	10	-	g

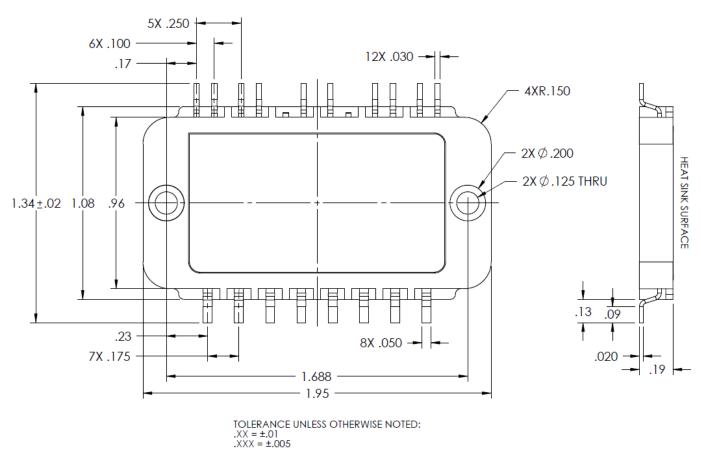

INSTALLATION INSTRUCTIONS:

Recommended thermal interface material = Laird Tgon 805 (5 mil thick graphite pad)

- 1. Fasten screws to 1 to 2 in-lb. of torque.
- 2. Fasten screws to final torque.


TECHNICAL DATA DATASHEET 6179, Preliminary

SCHEMATIC DIAGRAM AND PINOUT:



TECHNICAL DATA DATASHEET 6179, Preliminary

MECHANICAL OUTLINE (inches):

TECHNICAL DATA DATASHEET 6179, Preliminary

Part Number SPM1019A3-2 SMT leads. reverse mounting

PINS 13 AND 16 REMOVED

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.

4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.

6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.