1500W Single-Phase Power Factor Correction Converters

Description
Harmonic current distortion is a common power quality problem. Its adverse effects include degradation of system voltage waveforms, reduction of power factor, etc. The 1500W single-phase ac-dc converter with Power Factor Correction (PFC) is designed to reduce harmonic currents and achieve near unity power factor in single-phase systems with frequency ranging from 45 Hz to 65 Hz. The 1500W PFC converter is composed of a rectifier bridge followed by a boost dc-dc converter employing average current control.

Features
- Single-phase AC input, 85VAC ~ 265VAC input voltage, 45Hz ~ 65 Hz input frequency
- 395VDC output voltage
- Up to 1500W output power
- 50kHz switching frequency
- Near unity power factor
- Maximum 6% total harmonic current distortion at 220VAC, 1500W
- Over voltage, under voltage, over temperature protection, and instantaneous input current protection.
- Base plate rated to 100 °C

Block Diagram

Figure 1 Block diagram of 1500W single-phase PFC Converter
Table 1 Electrical Characteristics (T_A=25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V<sub>in</sub></td>
<td>85</td>
<td>265</td>
<td>VAC</td>
<td></td>
</tr>
<tr>
<td>Input Frequency</td>
<td>f</td>
<td>45</td>
<td>65</td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Startup Input Voltage</td>
<td></td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>V</td>
</tr>
<tr>
<td>Soft Start Time</td>
<td></td>
<td>0.7</td>
<td>1.5</td>
<td>sec</td>
<td></td>
</tr>
<tr>
<td>Inrush Current</td>
<td>I<sub>0</sub>=0 A</td>
<td>22</td>
<td>50</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage</td>
<td>V<sub>0</sub></td>
<td>390</td>
<td>395</td>
<td>400</td>
<td>V</td>
</tr>
<tr>
<td>Output Power (See note 1)</td>
<td>P<sub>0</sub></td>
<td></td>
<td>1500</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Over Output Voltage Protection</td>
<td></td>
<td>460</td>
<td></td>
<td>VDC</td>
<td></td>
</tr>
<tr>
<td>Over Instantaneous Input Current</td>
<td></td>
<td>59</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Thermal Protection</td>
<td></td>
<td>100</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T<sub>A</sub></td>
<td>-55</td>
<td>100</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>R<sub>θjc</sub></td>
<td>0.09</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Isolation (Input to Case)</td>
<td></td>
<td>1500</td>
<td></td>
<td>VAC</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor</td>
<td>PF</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Harmonic Current Distortion (See note 1)

<table>
<thead>
<tr>
<th>I<sub>0</sub></th>
<th>Vin= 85VAC</th>
<th>3</th>
<th>4</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 A</td>
<td>Vin= 220VAC</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 265VAC</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4 A</td>
<td>Vin= 85VAC</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 220VAC</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 265VAC</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Efficiency

<table>
<thead>
<tr>
<th>I<sub>0</sub></th>
<th>Vin= 85VAC</th>
<th>88</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 A</td>
<td>Vin= 220VAC</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 265VAC</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 A</td>
<td>Vin= 85VAC</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 220VAC</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vin= 265VAC</td>
<td>94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: 1) When the output power is below 10% of the rated power, the input current will be significantly distorted. However, the output voltage remains in regulation.
2) Not tested on actual units. Ensured by design.

PIN Description

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>N, L</td>
<td>AC line inputs</td>
</tr>
<tr>
<td>DC+, DC-</td>
<td>DC outputs</td>
</tr>
<tr>
<td>L_EN</td>
<td>Load enable pin. Open collector output with an internal 100 ohm resistor. Maximum collector current is 100mA. When Vo is lower than 365V, L_EN is shorted to "COM".</td>
</tr>
<tr>
<td>ON</td>
<td>PFC enable pin. When "ON" pin is connected to COM, PFC is enabled. Otherwise, PFC is disabled and Vo is the rectified AC input voltage.</td>
</tr>
<tr>
<td>COM</td>
<td>Control Signal Reference. Connected to "DC-" internally.</td>
</tr>
<tr>
<td>12V</td>
<td>Bias Voltage Supply. Output current up to 20mA.</td>
</tr>
<tr>
<td>TEMP</td>
<td>Substrate temperature sensor output. 10mV/Kelvin or (TEMP - 273) °C</td>
</tr>
</tbody>
</table>

TYPICAL APPLICATION

Figure 2 illustrates the configuration of 1500W single-phase PFC converter in a typical application. External capacitor filter is required at the PFC converter output. Selection of the output capacitor is usually determined by the switching frequency ripple current, the second harmonic ripple current, the DC voltage, the output ripple voltage and the hold-up time. All electrical characteristics in this datasheet are tested with an output capacitor of 1400 μF, which generates maximum 20V peak-peak 2nd harmonic ripple voltage.

The inrush current is limited by an internal 15 ohm surge resistor. To reduce power loss, the resistor is shorted after the PFC is powered up for 350m sec, no matter if the PFC converter is enabled. Having a heavy load connected to the PFC output during start-up time will delay the charge of the output capacitor, and may result in high input current spikes. If customer load does not have under voltage lockout, it is recommended to insert a switch (e.g. a relay), controlled by the pin "L_EN", between the load and the output capacitor, as shown in Figure 2. "L_EN" changes its status when the output voltage reaches 365VDC. The logic of "L_EN" is configurable.
Sensitron Semiconductor

PFCU-1500

Technical Data
Data Sheet 4158, Rev. E

Mechanical Outline
DISCLAIMER:
1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users’ fail-safe precautions or other arrangement.
3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user’s units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.